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Abstract 
 1	  

Retrospective seasonal forecasts of North Atlantic tropical cyclone (TC) activity over the 2	  

period 1980-2014 are conducted using a GFDL high-resolution coupled climate model 3	  

(FLOR). The focus is on basin-total TC and U.S. landfall frequency. The correlations between 4	  

observed and model predicted basin-total TC counts range from 0.4 to 0.6 depending on the 5	  

month of the initial forecast. The correlation values for the U.S. landfalling activity based on 6	  

individual TCs tracked from the model are smaller and between 0.1 and 0.4. Given the limited 7	  

skill from the model, statistical methods are used to complement the dynamical seasonal TC 8	  

prediction from the FLOR model. Observed and predicted TC tracks were classified into four 9	  

groups using the fuzzy c-mean clustering to evaluate model’s predictability in observed 10	  

classification of TC tracks. Analyses revealed that the FLOR model has the largest skill in 11	  

predicting TC frequency for the cluster of TC which tracks over the Caribbean Ocean and the 12	  

Gulf of Mexico. 13	  

New hybrid models to improve the prediction of observed basin-total TC and landfall TC 14	  

frequencies are developed. These models use large-scale climate predictors from the FLOR 15	  

model as predictors for generalized linear models. The hybrid models show considerable 16	  

improvements in the skill in predicting the basin-total TC frequencies relative to the 17	  

dynamical model. The new hybrid model shows correlation coefficients as high as 0.75 for 18	  

basin-wide TC counts from the first two lead months and retains values around 0.52 even at 19	  

the 6-month lead forecast. The hybrid model also shows comparable or higher skill in 20	  

forecasting U.S. landfalling TCs relative to the dynamical predictions. The correlation 21	  

coefficient is about 0.5 for the 2-6 month lead times. 22	  
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1. Introduction 23	  

Tropical cyclones (TCs) were the most costly natural disaster to affect the United 24	  

States (U.S.) over the period 1980–2011 (Pielke et al. 2008; Smith and Katz 2013). According 25	  

to Smith and Katz (2013), TCs were responsible for over $400 billion in damages over the 26	  

period (Consumer Price Index), which correspond to 47.4% of all the damage caused by all 27	  

the natural disasters responsible for $1+ billion combined. Smith and Katz (2013) also 28	  

reported apparent increasing trends in both the annual frequency of billion- dollar events and 29	  

in the annual aggregate loss from these events. Therefore, predicting TC activity at seasonal 30	  

time scales is a topic of large scientific and socio-economic interest.  31	  

Since Gray (1984a, b) first attempted seasonal forecasts of TC activity for the North 32	  

Atlantic (NA), tremendous effort has been devoted to construct and improve statistical models 33	  

in which observed large-scale climate indices ahead of the hurricane season are used to predict 34	  

subsequent summertime basin total TC frequency (Gray et al. 1992, 1993, 1994; Klotzbach 35	  

and Gray 2004, 2009; Elsner and Jagger 2006; Klotzbach 2008) and landfalling TCs 36	  

(Lehmiller et al. 1997; Klotzbach and Gray 2003, 2004; Saunders and Lea 2005; Elsner et al. 37	  

2006; Klotzbach 2008; Jagger and Elsner 2010). However, most of the current statistical 38	  

seasonal forecasts show skill for forecasts starting from April and later for the subsequent TC 39	  

season in July-November (e.g., Elsner and Jagger 2006), and prediction skill is limited when 40	  

the lead time increases and the target region is smaller than the entire North Atlantic 41	  

(Lehmiller et al. 1997; Klotzbach and Gray 2012). 42	  

Recent advances in dynamical modeling and computational resources have enabled 43	  

prediction using high-resolution dynamical models [see review in Camargo et al. (2007)]. 44	  

These models showed significant skill in predicting basin-total TCs for seasonal prediction 45	  
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(e.g., Vitart and Stockdale 2001; Vitart 2006; Vitart et al. 2007; LaRow et al. 2008; Camargo 46	  

and Barnston 2009; LaRow et al. 2010; Zhao et al. 2010; Alessandri et al. 2011; Chen and Lin 47	  

2011, 2013; Vecchi et al. 2014; Camp et al. 2015), with correlation values up to 0.96 between 48	  

observed and the predicted North Atlantic TC counts over the 2000–2010 period (Chen and 49	  

Lin 2011, 2013). However, predicting U.S. landfall frequency using dynamical models 50	  

remains challenging even though it is of paramount societal and scientific importance (Vecchi 51	  

and Villarini 2014). Vecchi et al. (2014) and Camp et al. (2015) found some predictive skill 52	  

for TC landfall in the Caribbean, but limited skill for U.S. landfall frequency. 53	  

Some of the limitations of dynamically forecasting TCs can be alleviated using so-54	  

called “hybrid predictions” or “statistical-dynamical predictions.” In the hybrid predictions, a 55	  

statistical model is constructed using the empirical relationship between observed TC activity 56	  

and predicted large-scale parameters simulated by a dynamical model. Using the statistical 57	  

model, future TC activity is then predicted given the large-scale parameters predicted by a 58	  

dynamical model (e.g., Zhao et al. 2010; Wang et al. 2010; Vecchi et al. 2011, 2013, 2014). 59	  

For example, previous studies showed that basin total North Atlantic TC activity substantially 60	  

correlated with relative sea surface temperature (SST) anomalies (i.e., local SST anomaly 61	  

relative to tropical mean anomaly) in observations (e.g., Latif et al. 2007; Swanson 2008; 62	  

Vecchi et al. 2008; Villarini et al. 2010, Villarini and Vecchi 2012) and dynamical models 63	  

(Zhao et al. 2010; Villarini and et al. 2011; Murakami et al. 2012; Knutson et al. 2013; 64	  

Ramsay and Sobel 2011). Using these simulated/predicted SST anomalies as predictors, 65	  

previous studies achieved substantial skill in predicting basin-total TC frequency (Zhao et al. 66	  

2010; Vecchi et al. 2011, 2013, 2014), basin-total power dissipation index (PDI) and 67	  

accumulated cyclone energy (ACE)(Villarini and Vecchi 2013) compared to dynamical 68	  
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models. However, while these studies showed that it is possible to skillfully forecast North 69	  

Atlantic TC activity at the basin scale, little is known about the applicability of hybrid systems 70	  

at much more regional scales.  71	  

Vecchi et al. (2014) reported that the high-resolution dynamical model that will be 72	  

used in this study has higher skill in predicting TCs near the coastline of the Gulf of Mexico 73	  

and Caribbean Sea relative to those near the coastline of northeastern United States (see their 74	  

figure 13). This indicates that models may have higher skill in predicting/simulating one or 75	  

more groups of TC tracks. If any hybrid models could improve predictions for the groups with 76	  

poor forecasting skill, we could improve prediction skill for landfall TC frequency as well as 77	  

basin total TC frequency. Moreover, finding predictors in the way of constructing hybrid 78	  

model will help the understanding of the potential physical mechanisms responsible for U.S. 79	  

landfalling TCs. Kossin et al. (2010) classified all NA TC tracks into four clusters, revealing 80	  

distinct characteristics for each cluster in terms of their tracks and genesis locations, 81	  

seasonality, and relationship between frequency of TCs and climate variability. Colbert and 82	  

Soden (2012) classified TC tracks into three groups (straight moving, recurving landfall, or 83	  

recurving ocean) highlighting differences in the climate conditions associated with each one of 84	  

them. However, there is no information about how predictable these TC clusters are. 85	  

In this study, we first examine the predictability of observed basin-total TC frequency 86	  

of observed TC clusters. Second, we attempt to construct a hybrid model to improve the 87	  

prediction skill in TC frequency for each cluster, which in turn leads to the improvements in 88	  

predicting basin-total TC frequency. Third, we examine observed and predicted TC landfall 89	  

ratio, and construct a hybrid model to improve prediction skill in TC landfall ratio. Finally, we 90	  
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show the forecasting skill in landfall TC frequency over the United States predicted by FLOR 91	  

and compare the results from our newly developed hybrid model. 92	  

The remainder of this paper is organized as follows. Section 2 describes the models 93	  

and data used in this study. Section 3 assesses the performance of the hybrid models in 94	  

predicting TCs within each considered TC cluster, TC landfall ratio, and TC landfall 95	  

frequency over the United States and compares these results to the dynamical model. Finally, 96	  

Section 6 provides a summary of the results. 97	  

 98	  

2. Methods 99	  

Throughout this study, we focus on the prediction of North Atlantic TCs during July–100	  

November because about 84% of all storms occurred during these months over the 1980–2014 101	  

period. We focus on tropical storms or more intense cyclones (wind speed >34 kt), and these 102	  

storms are defined as TCs. The targeted prediction is the frequency of basin-total TCs and 103	  

landfalling TCs along the U.S. coastline. In this section, dynamical models, observed data, and 104	  

the TC detection algorithms are described.  105	  

 106	  

a. Dynamical model 107	  

The dynamical model used for retrospective seasonal forecasts is the Forecast-oriented 108	  

Low Ocean Resolution (FLOR; Vecchi et al. 2014; Jia et al. 2015a) of the Geophysical Fluid 109	  

Dynamics Laboratory (GFDL) Coupled Model version 2.5 (CM2.5; Delworth et al. 2012). 110	  

FLOR comprises 50-km mesh atmosphere and land components, and 100-km mesh sea ice and 111	  

ocean components. For each year and each month in the period 1980–2014, 12-month duration 112	  

predictions were performed after initializing the model to observationally constrained 113	  
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conditions. Here, we defined forecasts from July, June,…, January, December initial 114	  

conditions as the lead-month (L) 0, 1, …, 6, 7 forecasts for the predictions of TC activity in 115	  

subsequent summer (July–November).  116	  

The 12-member initial conditions for ocean and sea ice components were built through 117	  

a coupled ensemble Kalman filter (EnKF; Zhang and Rosati 2010) data assimilation system 118	  

developed for the GFDL Coupled Model version 2.1 (CM2.1; Delworth et al. 2006; 119	  

Wittenberg et al. 2006; Gnanadesikan et al. 2006), whereas those for atmosphere and land 120	  

components were built from a suite of SST-forced atmosphere-land-only simulations to the 121	  

observed values using the components in FLOR. Therefore, the predictability comes entirely 122	  

from the ocean and sea ice, and may be thought of as a lower bound on the potential prediction 123	  

skill of a model because predictability could also arise from atmospheric (particularly 124	  

stratospheric) and land initialization. During the simulation using FLOR, simulated 125	  

temperature and wind stress are adjusted using so-called “flux-adjustment” in which model’s 126	  

momentum, enthalpy and freshwater fluxes from atmosphere to ocean are adjusted to bring the 127	  

model’s long-term climatology of SST and surface wind stress closer to observations and 128	  

improve simulations of TCs and precipitation (Vecchi et al. 2014; Delworth et al. 2015). 129	  

 130	  

b. Observational datasets and detection algorithm for tropical cyclones 131	  

The observed TC “best-track” data were obtained from the International Best Track 132	  

Archive for Climate Stewardship (IBTrACS; Knapp et al. 2010) and used to evaluate the TC 133	  

simulations in the retrospective seasonal predictions. We also use the UK Met Office Hadley 134	  

Centre SST product (HadISST1.1; Rayner et al. 2003) as observed SST. 135	  
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Fig.1  

Model-generated TCs were detected directly from 6-hourly output using the following 136	  

tracking scheme documented in Murakami et al. (2015). In the detection scheme, the flood fill 137	  

algorithm is applied to find closed contours of some specified negative sea level pressure 138	  

(SLP) anomaly with warm core (1K temperature anomaly). The detection scheme also 139	  

considers satisfaction of duration of 36 consecutive hours for which TC candidate should 140	  

maintain warm core and wind criteria (15.75 m s–1). 141	  

 142	  

3. Results 143	  

a. Clustering TC tracks and forecasting skill by a dynamical model 144	  

We first applied a clustering algorithm to observed TC tracks (Fig. 1, green tracks). 145	  

The cluster technique used here is the fuzzy c-means clustering developed by Kim et al. 146	  

(2011). Fuzzy clustering has been known to produce more natural classification results for 147	  

datasets such as TC tracks that are too complex to determine their boundaries of distinctive 148	  

pattern (Kim et al. 2011). Following Kossin et al. (2010), the final number of clusters is equal 149	  

to 4, yielding early recurving TCs (CL1), the Gulf of Mexico and Caribbean TCs (CL2), 150	  

subtropical (or extratropical transition)-type TCs (CL3), and classic “Cape Verde hurricanes” 151	  

(CL4). Each cluster receives a comparable number of the total storms as shown in the 152	  

fractional ratio between 20% and 28%. When compared to Kossin et al. (2010), CL2 and CL3 153	  

are similar to the two clusters in their study, whereas CL1 and CL4 are different from their 154	  

results. This could be due to the different study period. Kossin et al. (2010) used observed data 155	  

for the period 1950–2007, whereas we focus on the period 1980–2014. When we extend the 156	  

fuzzy clustering analysis to 1958–2014, we still obtain the same clustering groups as shown in 157	  
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Fig.2  

Fig. 1, indicating that the differences from Kossin et al. (2010) may be due to the difference in 158	  

clustering methodology, rather than differences in study period. 159	  

Second, we assigned predicted TCs to one of the observed TC clusters. Regardless of 160	  

any lead-month forecasts and ensemble members, we computed the root-mean-square error 161	  

(RMSE) between the predicted (black track) and observed mean (red track) TC track for each 162	  

TC cluster. To compute RMSE, we interpolate every TC track into 20 segments with equal 163	  

length following Kim et al. (2011). We assign the predicted TC track to the TC cluster with 164	  

the minimum RMSE. An alternative way is to conduct the cluster analysis using the combined 165	  

data of observed and predicted TC tracks. However, because we obtained similar results to the 166	  

method above (figure not shown), we will use the RMSE for the assignment. The results for 167	  

assigned TC tracks are shown in Fig. 1 as black tracks. Although the dynamical model 168	  

predicts fractional ratios of TC frequency for CL1 and CL3 similar to the observations (about 169	  

20%), it slightly overestimates (underestimates) the fractional ratio for CL2 (CL4). Figure 2 170	  

shows forecast skill in predicting TC frequency for each cluster and for each lead month by 171	  

the dynamical model in terms of rank correlation (Fig. 2a) and RMSE (Fig. 2b). For the 172	  

sample size of 35 years (i.e., 1980–2014), correlations of 0.33 and 0.43 are statistically 173	  

significant at the 5% and 1% levels. Rank correlation for the basin total TC counts (black line 174	  

in Fig. 2a) is about 0.6 for lead time L=0–2, and decreases to about 0.4 for L=5–7. Vecchi et al. 175	  

(2014) also reported similar results for the correlations for the basin-total frequency. RMSE 176	  

for the basin total TC counts (black line in Fig. 2b) is about 5–7. This large RMSE is mainly 177	  

because of the underestimation in predicting TC frequency as also reported in Murakami et al. 178	  

(2015). Shorter lead-month predictions show larger RMSE (black line in Fig. 2b). Although 179	  

further investigation is required, this may be related to initial spin-ups due to the cold SST bias 180	  
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Fig.2  

Fig.2  

in the initial condition in the tropical North Atlantic, which is inherited from CM2.1 for the 181	  

initialization. During the predictions for the first few months, FLOR tries to adjust the cold 182	  

bias through the flux adjustments; however, it may take a few months to adjust the cold biases.  183	  

Among the four TC clusters, the dynamical model shows relatively higher skill in 184	  

predicting CL2, followed by CL1 and CL4. The higher skill in predicting CL2 is consistent 185	  

with Vecchi et al. (2014), who reported that FLOR has higher skill in predicting TCs near the 186	  

coastline of the Gulf of Mexico and Caribbean Sea. On the other hand, the FLOR predictions 187	  

for CL3 show the lowest skill, indicating that the prediction of TCs that undergo extratropical 188	  

transition remains challenging for dynamical models [see also Jones et al. (2003)]; it is unclear 189	  

whether this reflects a deficiency in the models and initialization, or an inherent limit to the 190	  

predictability of the year-to-year variations of CL3 storms. 191	  

 192	  

b. Correlations between observed TC frequencies and predicted large-scale parameters 193	  

Section 3a showed that the dynamical model has the lowest skill in predicting CL3 and 194	  

CL4 TCs. If these biases could be improved, prediction of basin-total frequency and 195	  

landfalling TC frequency could potentially be improved as well. For this purpose, we start by 196	  

constructing a hybrid model in which observed TC frequency is regressed and predicted using 197	  

some key large-scale parameters simulated by the dynamical model for each cluster. To 198	  

identify the key parameters, we first investigate correlations between observed TC frequency 199	  

and large-scale parameters. The large-scale parameters considered are relative SST (RSST), 200	  

geopotential height at 500 hPa (Z500), and zonal component of vertical wind shear (200–850 201	  

hPa, WS). The RSST is defined as the local SST anomaly subtracted from the tropical mean 202	  

(30°S–30°N) SST anomaly. We have performed a preliminary investigation of including other 203	  
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Fig.3  

parameters such as mid-level relative humidity, low-level relative vorticity, SLP, steering flow 204	  

among others; however, these parameters did not show significant correlations with TC 205	  

frequency for any clusters (figure not shown). Also, we prefer parsimonious models that 206	  

incorporate a smaller number of predictors in order to help avoid an over-fitting problem when 207	  

a hybrid model is constructed. 208	  

Figure 3 shows correlation map between the time-series of observed TC frequency for 209	  

each cluster and the three large-scale parameters computed for each 1° × 1° grid box within 210	  

the global domain during the peak season. For RSST (Fig. 3a–d), all clusters except for CL3 211	  

show higher positive correlations in the tropical NA, which is consistent with previous studies 212	  

(e.g., Villarini et al. 2010; Vecchi et al. 2011; Villarini and Vecchi 2012). CL2 and CL4 also 213	  

show the La Niña-like pattern in the Pacific, indicating that TC frequency for these clusters 214	  

increase during La Niña years. Although CL1 does not show the La Niña-like pattern clearly, 215	  

the cluster shows negative correlation in the subtropical Pacific. CL3 is unique with respect to 216	  

the other clusters because there is no significant pattern in the correlation even in the tropical 217	  

North Atlantic, indicating that CL3 is insensitive to local SST anomaly. As for Z500 (Fig. 3e–h), 218	  

there are higher positive correlations in the subtropical central pacific for CL1, CL2, and CL4. 219	  

A preliminary investigation implies that this correlation is related to the Pacific/North 220	  

American (PNA) pattern. We found that when the anomaly of Z500 is positive in the box of Fig. 221	  

3e, f, and h, Z500 in the subtropical North Atlantic (30–50°N, 55–75°W) is negative through a 222	  

series of wave train along the subtropical westerly jet. Also, during the positive phase, 223	  

convection is active in the tropical North Atlantic and western African coast, leading to more 224	  

frequent easterly waves and TC development associated with the enhanced convection. On the 225	  

other hand, CL3 shows no correlation with Z500, which is again largely different from other 226	  
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Fig.4  

Fig.5  

clusters. For the WS (Fig. 3i–l), there are higher negative correlations in the tropical NA for 227	  

CL1, CL2, and CL4, which is reasonable because TC activity is unfavorable under strong 228	  

vertical wind shear. However, it is intriguing that CL3 is not sensitive to vertical wind shear. 229	  

CL3 does not show significant correlations with any parameters, suggesting that CL3 230	  

may have a substantially larger stochastic element to its variability than the other clusters, and 231	  

may thus be inherently less predictable. However, we want to identify any key large-scale 232	  

parameters to construct a hybrid model. When correlation is computed between observed TC 233	  

frequency and RSST, observations (Fig. 4b) and dynamical model (Fig. 4a) show relatively 234	  

higher correlations in the four domains. Although physical mechanisms explaining the 235	  

relationship between Atlantic CL3 TCs and the remote SSTs are difficult to interpret, we 236	  

utilized RSST in these four domains as predictor for CL3 TCs. 237	  

The domains of the predictors used for the hybrid model are shown in the rectangles in 238	  

Fig. 3. The dynamical model should also have significant forecast skill in predicting these 239	  

large-scale parameters for each domain. Figure 5 shows anomaly correlations for the lead-240	  

months 0, 3, and 6, respectively, for each parameter. The red shaded area is the region where 241	  

anomaly correlation exceeds 0.5, revealing that the dynamical model has skill in predicting the 242	  

large-scale parameters for each domain used for predictors, even for the lead-month 6. The 243	  

skill in predictions and the correlation with respect to the observations justifies the use of the 244	  

large-scale parameters in the domains as the predictors for the hybrid model. 245	  

 246	  

c. Hybrid Poisson regression model 247	  

Using the predictors discussed in Section 3b, a Poisson regression model (e.g., 248	  

Villarini et al. 2010; Elsner and Jaeger 2013) is constructed to predict observed TC frequency 249	  
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Fig.6  

Fig.7  

for each cluster using large-scale parameters predicted by the dynamical model of FLOR. First 250	  

of all, the probability of TC frequency ! is obtained when the mean frequency (i.e., rate) λ is 251	  

given as follows. 252	  

! ! = !!!!!

!!
,  where  x = 0, 1, 2, … and λ >0. (1) 253	  

The Poisson regression model is expressed as 254	  

log ! = !! + !!!! +⋯+ !!!!, (2) 255	  

There are p predictors and p+1 parameters and a logarithmic link function. First we determine 256	  

βp given the observed λ and simulated xp (regression or training). Then, the cross validation is 257	  

performed to evaluate the model skill. Here we apply so-called “leave-one-out cross validation” 258	  

(LOOCV; Elsner and Jaeger 2013). In the LOOCV, we first exclude a single year of 259	  

observations and predictors; then, we determine the coefficients of the Poisson regression 260	  

model using remaining years. Using the model, TC count for the excluded year is predicted. 261	  

This is done for 35 years, removing each year’s data point successively. 262	  

Figure 6 reveals results of training (Fig. 6a–d) and LOOCV (Fig. 6e–h) for each cluster 263	  

at lead-month 0. To compare skill in these hybrid models with the dynamical model, Fig. 7 264	  

shows comparisons of rank correlations (Fig. 7a,c) and RMSE (Fig. 7b,d) between the 265	  

dynamical model (solid lines) and LOOCV (dashed lines). Predictions for all of clusters using 266	  

the hybrid approach are improved in LOOCV in terms of RMSE for every lead month. 267	  

Although CL1 was not improved in terms of correlation, most of the clusters show 268	  

improvements in simulating observed interannual variation. When these predicted TC 269	  

frequencies are summed up, we derive the basin-total TC frequency. The basin total frequency 270	  

also shows higher skill in the hybrid than the dynamical model (Fig. 7c,d). We obtain a 271	  

maximum correlation coefficient of 0.76 at lead-month 1 and the minimum correlation is still 272	  
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high at 0.54 at lead-month 7. On the other hand, the values of the correlation coefficient for 273	  

dynamical model are 0.63 and 0.35, respectively, highlighting the improvements introduced 274	  

by the hybrid model in predicting basin-total TC frequency. 275	  

 276	  

d. Correlations between observed TC landfall ratio and predicted large-scale parameters 277	  

Section 3c revealed that the skill in predicting basin-total TC frequency is higher in the 278	  

hybrid than in the dynamical model. Therefore, skilful forecasting of the fraction of total TCs 279	  

making landfall in the United States could lead to accurate predictions of TC landfall activity 280	  

when combined with prediction of basin-total TC frequency. In this section, we first 281	  

investigate the physical drivers for the observed landfall ratio. The landfall domain defined in 282	  

this study is the coastal region of the United States as identified in the blue region in Fig. 1. In 283	  

this study, once a TC propagates in the blue region in Fig. 1, we count one for TC landfall 284	  

frequency regardless of multiple landfall events for the same TC. Figure 8 shows the 285	  

interannual variation of basin-total TC frequency (red), landfall TC frequency in the United 286	  

States (blue), landfall ratio (black), and Niño-3.4 index (green) in the observations. The Niño-287	  

3.4 index is obtained from the mean SST anomaly in the region bounded by 5°N and 5°S, and 288	  

between 170°W to 120°W. The rank correlation between basin-total TC frequency and 289	  

landfall ratio is 0.08, indicating that there is no strong linear relationship between the two 290	  

variables. Indeed, while there were 18 TCs in 2010, which was the third largest TC frequency 291	  

during the period 1980–2014, only one of them made landfall in the United States that year. 292	  

The observed relationship between TC landfall ratio and climate indices was analysed 293	  

by Villarini et al. (2012). They constructed a statistical model to predict landfall ratio using 294	  

three predictors [May–June mean North Atlantic Oscillation (NAO), the Southern Oscillation 295	  
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Fig.9  

index (SOI), and tropical mean SST (30S°–30°N)]. Here we computed the correlation 296	  

coefficient between observed TC landfall ratio and simulated large-scale parameters of SST 297	  

and May-June mean SLP as an indication of effect of NAO. However, we could not find any 298	  

significant correlation using SLP (figure not shown). Nevertheless, we found a La Niña-like 299	  

pattern in the correlation for SST (Fig. 9), indicating that TC landfall ratio tends to be higher 300	  

(lower) during La Niña (El Niño) years. The increased landfall ratio during La Niña years is 301	  

consistent with Bove et al. (2008) who examined the effects of El Niño on U.S. landfalling 302	  

hurricanes and found that the probability of U.S. hurricanes increased from 28% during El 303	  

Niño years to 66% during La Niña years. However, although the rank correlation between 304	  

landfall ratio (black line in Fig. 8) and Niño-3.4 index (green line in Fig.8) is negative (i.e., –305	  

0.24), the correlation is not statistically significant at 90% level, indicating that landfall ratio is 306	  

only slightly correlated with the La Niña conditions. 307	  

 308	  

e. Hybrid binomial regression model  309	  

As shown in section 3d, SST anomalies in the tropical Pacific are correlated with TC 310	  

landfall ratio for the United States as an indication of La Niña years. Although the correlation 311	  

is not high, we use the SST anomalies in the domain shown Fig. 9 as a predictor for the hybrid 312	  

model for predicting TC landfall ratio using a binomial regression model (Villarini et al. 2012). 313	  

Following Villarini et al. (2012), let us define Y1 and Y2 as two Poisson random variables with 314	  

means of µ1 and µ 2. Let us define m as their sum (! = !! + !!), which also follows a Poisson 315	  

distribution with mean equal to µ1 + µ2. In the case of this study, m represents the basin-total 316	  

TC frequency, whereas Y1 represents the frequency of landfall TCs over U.S. Given m, the 317	  

distribution of Y1 can be written as 318	  
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Fig.10  

Fig.11  

! !! = ! ! = ! !!!
! !!! ! !!!!!

!!(1− !)(!!!), (3) 319	  

where ! = !!/(!! + !! ). The mean and the variance of !!/!  are !  and !(1−   !) , 320	  

respectively. Similar to what is described in Eq. (2), we can relate the parameter ! to a vector 321	  

of p predictors: 322	  

log !
!!!

= !! + !!!! +⋯+ !!!!. (4) 323	  

The dependence of ! on the predictors can be written as 324	  

µμ = !"#  (!!!!!!!!⋯!!!!!)
!!!"#  (!!!!!!!!⋯!!!!!)

. (5) 325	  

Here we consider one predictor (i.e., p=1) of SST as discussed above. Similar to the procedure 326	  

described in Section 3c, we first determine !! given the observed ! and simulated xp. Then, 327	  

the LOOCV is performed to evaluate the hybrid model. 328	  

Figure 10 reveals results of training (Fig. 10a–c) and LOOCV (Fig. 10d–e) for lead-329	  

month 0, 3, and 6, respectively. The overall correlation is relatively low (i.e., at most 0.37), 330	  

indicating that landfall ratio remains difficult to improve even using the hybrid model. To 331	  

compare skill in the hybrid model with the dynamical model, Fig. 11 shows comparisons of 332	  

rank correlations (Fig. 11a) and RMSE (Fig. 11b) between the dynamical model (solid line) 333	  

and LOOCV (dashed line). Although rank correlation is lower when compared with the basin-334	  

total TC frequency (Fig. 7c), the hybrid model shows higher skill in predicting landfall ratio 335	  

than the dynamical mode does. RMSE (Fig. 11b) looks similar between the hybrid and 336	  

dynamical models, although the hybrid model shows slightly lower RMSE than the dynamical 337	  

model. 338	  

 339	  

f. Synthesized hybrid model for predicting landfall TCs over the United States 340	  



	  

	  
	  

16	  

Fig.12  

Fig.13  

Here we have two hybrid models: the Poisson regression model to predict TC 341	  

frequency for each cluster, yielding basin total TC frequency by summing all TC clusters 342	  

(Section 3c); the binomial regression model to predict TC landfall ratio over the United States 343	  

(Section 3e). By combining the two hybrid models, we can make predictions of TC landfall 344	  

frequency over United States. A schematic diagram is shown in Fig. 12 for the synthesized 345	  

hybrid model. Given the key large-scale parameters for a specific year (Step 1), we predict 346	  

mean TC frequency for each cluster (!!,!,!,!) (Step 2). Given the predicted mean  !, random 347	  

resampling of ! is performed for k times based on the Poisson distribution as shown in Eq. (1), 348	  

thereby yielding k samples of ! for each cluster (Step 3). For each iteration, ! values for all the 349	  

clusters are summed up, providing a sample of basin total TC frequency (N) (Step 3). A 350	  

similar resampling procedure is performed for the TC landfall ratio, yielding k samples of ! 351	  

(Steps 4–6). For each sample, landfall TC frequency over the United States (X) is computed by 352	  

multiplying N and ! (Step 7). Based on the k samples for X, we can compute a probabilistic 353	  

range (e.g., range of 10% bottom bound or 90% top bound) of predicted TC landfall frequency 354	  

as well as mean X value for each year. 355	  

Figure 13 shows comparisons between the dynamic model and the synthesized hybrid 356	  

model in terms of landfall TC frequency over the United States. First of all, the dynamical 357	  

model systematically underestimates landfall TC frequency, whereas this underestimation is 358	  

improved in the hybrid model. Moreover, the amplitude of interannual variation is much larger 359	  

in the hybrid than the dynamical model. For example, the anomalous year of 1998 is well 360	  

predicted by the hybrid model. On the other hand, the hybrid model significantly 361	  

overestimates TC landfall frequency in 2010. This year is characterized by La Niña conditions. 362	  

From Fig. 3a-d and Fig. 9, both TC frequency for each cluster and TC landfall ratio are 363	  
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Fig.14  

expected to be large for this year. This year is also characterized by negative NAO. Villarini et 364	  

al. (2012) reported a larger fraction of storms making U.S. landfall during negative NAO 365	  

phase based on observations, indicating that even if we incorporated NAO index into the 366	  

hybrid model, the hybrid model would still overestimate 2010 landfall TCs. 367	  

Figure 14 summarizes the comparisons of rank correlations and RMSE for each lead 368	  

month between the dynamical and hybrid models. The hybrid model shows comparable or 369	  

higher skill for most of the lead months in terms of rank correlations relative to dynamical 370	  

forecasts, although correlations show no significant differences in the first three and the last 371	  

two lead months (Fig. 14a). The hybrid model shows smaller RMSE for all lead months 372	  

relative to the dynamical forecasts. We can conclude that our new hybrid model retains 373	  

forecast skill up to lead month 5 with correlation coefficient 0.5 and forecast root mean square 374	  

error of 2.0 storms per year for U.S. landfalling TCs. 375	  

We also preliminarily checked the performance of an alternative statistical method in 376	  

which TC landfall frequency is computed using the constant climatological mean landfall ratio 377	  

based on observations along with the TC frequency predicted from the Poisson regression 378	  

model. Although the method shows some improvements in terms of RMSE for the lead month 379	  

0 and 1 predictions relative to the synthesized hybrid model, the scheme does not show 380	  

improvements in terms of rank correlation. Accurate predictions for landfall TC frequency 381	  

seem to be critically dependent on the accurate prediction for landfall ratio in which the 382	  

present study shows limited skill (Fig. 11). 383	  

 384	  

4. Summary 385	  
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In this study, we evaluated retrospective seasonal forecasts based on a GFDL high-386	  

resolution coupled climate model (FLOR), and we constructed new hybrid models to improve 387	  

the forecast skill in predicting the frequency of basin-total and U.S. landfalling TCs. First, we 388	  

classified observed TCs into four groups of TCs using the fuzzy c-means clustering algorithm. 389	  

Predicted TCs by FLOR are assigned to one of the observed clusters. We found that FLOR has 390	  

high skill in predicting the Gulf of Mexico and Caribbean TCs (CL2), whereas it has low skill 391	  

in predicting the subtropical TCs (CL3). The CL3 storms also exhibited limited statistical 392	  

relationships to large-scale climate conditions, suggesting that the limited prediction skill may 393	  

reflect limited underlying predictability. 394	  

Second, we constructed a hybrid model to predict TC frequency for each cluster using 395	  

the empirical relationship between observed TC frequency and predicted large-scale 396	  

parameters by a dynamical model. The hybrid model shows equivalent or higher skill in 397	  

predicting TC frequency for each cluster relative to the dynamical model. The improvements 398	  

for each cluster result in improvement in predicting basin-total TC frequency. We obtained 399	  

maximum and minimum values of the correlation coefficient equal to 0.75 and 0.52 at lead-400	  

month 1 and 7, whereas those for counting TCs directly from the dynamical model are 0.63 401	  

and 0.35, respectively. 402	  

Third, we evaluated retrospective prediction skill for the TC landfall ratio over the U.S., 403	  

revealing that the dynamical predictions have no skill in predicting the landfall ratio when 404	  

looking at simulated storms directly. Meanwhile, the observed TC landfall ratio is analyzed, 405	  

revealing that the landfall ratio has no correlation with basin-total TC frequency. However, the 406	  

observed interannual variation in landfall TC ratio has a moderate correlation with SST 407	  

anomaly in the tropical Pacific. This is associated with La Niña-like pattern, indicating that TC 408	  
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landfall ratio is higher during La Niña years. A binomial hybrid model was constructed for 409	  

better prediction of U.S. landfall TC ratios using the simulated SST anomaly in the tropical 410	  

Pacific. The hybrid model predicts interannual variations of TC landfall ratio better than the 411	  

dynamical model does. 412	  

By combining the two hybrid Poisson and binomial models, the frequency of TC 413	  

landfall is predicted. The synthesized hybrid model shows comparable or better prediction of 414	  

TC landfall frequency relative to the dynamical model in terms of RMSE relative to observed 415	  

TC landfall frequency, correlation between predicted and observed TC landfall frequency, and 416	  

amplitude of interannual variation. We can conclude that the new hybrid model retains 417	  

forecast skill up to lead month 5 with correlation coefficient 0.5 and forecast error of 2.0 for 418	  

TC landfall for U.S. 419	  

In this study, we used the results of retrospective forecasts by FLOR in which the 420	  

initial state of the atmosphere and land components are not constrained by observations, while 421	  

the oceanic component is. We hypothesize that if we initialized the atmospheric component, 422	  

we might obtain better skill in predicting TC activity in the North Atlantic. Similar tests with 423	  

FLOR show improved seasonal predictions of land surface conditions with atmospheric 424	  

initializations (Jia et al. 2015b). Recent studies show that the dynamical models have longer 425	  

prediction skill of 2-weeks or more due to accurate simulation of intraseasonal oscillations 426	  

such as the Madden Julian Oscillation (MJO) (e.g., Xiang et al. 2015a,b; Nakano et al. 2015). 427	  

Further, Murakami et al. (2015) showed that FLOR has the capability of simulating a strong 428	  

MJO signal. If atmospheric initial conditions contain observed MJO phase and amplitude, the 429	  

dynamical model may predict TC activity well at least for the shortest lead-month forecast of 430	  

L=0. Moreover, Murakami et al. (2015) showed better prediction of 1997/1998 TC activity 431	  



	  

	  
	  

20	  

using the higher resolution version of FLOR (i.e., HiFLOR) in addition to the better 432	  

simulations of large-scale parameters than FLOR. In the future, we plan to construct a hybrid 433	  

model using large-scale parameters simulated using HiFLOR to improve the skill in predicting 434	  

TCs in the North Atlantic. 435	  
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 591	  

List of Figures 592	  

FIG. 1 TC tracks during the period 1980–2014 as separated by the cluster analysis. The fuzzy 593	  

c-mean clustering is first applied to the observed TC tracks (green), yielding mean track (red) 594	  

for each cluster. All predicted TC tracks by FLOR (black) are assigned to observed TC cluster 595	  

regardless of any lead-months and ensemble members based on root-mean-square error 596	  

between the predicted and mean TC track. The number in the bottom-right corner indicates the 597	  

sample size with the fractional ratio in parenthesis. Blue domain in each panel shows the 598	  

region of the United States considered for the landfall.  599	  

 600	  

FIG. 2 Forecast skill in predicting TC frequency for each cluster and for each lead month 601	  

predicted by the dynamical model. (a) Rank correlation between observed and predicted. (b) 602	  

Root-mean-square error. Black line shows the basin-total TC frequency as defined as total TC 603	  

frequency among the TC clusters.  604	  

 605	  



	  

	  
	  

28	  

FIG. 3 Correlation map between the time-series of observed TC frequency for each cluster 606	  

and simulated mean large-scale parameters during July–November for each 1° × 1° grid box. 607	  

(a–d) Relative SST (RSST) defined as the local SST anomaly subtracted from the tropical 608	  

mean (30°S–30°N) SST anomaly. (e–h) Geopotential height at the 500 hPa level (Z500); (i–l) 609	  

Zonal component of vertical wind shear (200–850 hPa, WS). Rectangles indicate domains for 610	  

predictors as red rectangles showing positive sign and blue rectangles showing negative sign.  611	  

 612	  

FIG. 4 Correlation map between RSST and CL3 TC frequency during July–November. (a) 613	  

Correlation between observed RSST and predicted TC frequency by the model for CL3 at lead-614	  

month 0. (b) As in (a), but for correlation between observed RSST and observed TC frequency 615	  

for CL3. Red (blue) rectangles indicate domains for predictors showing a positive (negative) 616	  

sign. 617	  

 618	  

FIG. 5 Anomaly correlation for simulated large-scale parameters for each lead-month of L=0, 619	  

3, and 6. (a–c) RSST, (d–f) Z500, and (g–i) WS. The rectangles in these domains are the same as 620	  

in Fig. 3. 621	  

 622	  

FIG. 6 Results of interannual variation of TC frequency by (a–d) the regression and (e–h) the 623	  

leave-one-out cross validation (LOOCV) for each cluster at lead-month 0. Observed 624	  

(Regressed or cross validated) TC frequency is shown in black (blue). Blue regions indicates 625	  

range of 10% bottom range and 90% top range computed from random resampling based on 626	  

the Poisson distribution. Numbers shown for each panel show rank correlation and RMSE 627	  

between the black and blue lines. The star mark indicates statistical significance at 99% level. 628	  



	  

	  
	  

29	  

 629	  

FIG. 7 (a, b) Comparisons of forecast kills between dynamical model (solid line) and hybrid 630	  

model (dashed line) in predicting TC frequency for each cluster and for each lead month. (a) 631	  

shows the rank correlation between observations and models, whereas (b) shows RMSE 632	  

between them. (c, d) As in (a, b), but for basin-total TC frequency.  633	  

 634	  

FIG. 8 Observed time-series of TC frequency and landfall ratio in the North Atlantic. The red 635	  

line indicates observed basin-total TC frequency, whereas the blue line indicates observed 636	  

landfall TCs over the United States. The black line showss the landfall ratio. The green line 637	  

shows Niño-3.4 index which is obtained from the mean SST anomaly in the region bounded 638	  

by 5°N and 5°S, and between 170°W to 120°W. 639	  

 640	  

FIG. 9 Correlation map between observed TC landfall ratio over the United States and 641	  

simulated SST anomalies for each lead month. (a) Lead month 0, (b) Lead month 3, and (c) 642	  

Lead month 6. 643	  

 644	  

FIG. 10 Results of interannual variation of TC landfall ratio by (a–c) the regression and (d–f) 645	  

the leave-one-out cross validation (LOOCV) for each lead month of (a, d) 0, (b, e) 3, and (c, f) 646	  

6. Blue areas indicate the range between the 10% and 90% computed from random resampling 647	  

based on the binomial distribution. Numbers shown in the middle top for each panel indicate 648	  

rank correlation and RMSE between the black and blue lines. The star mark indicates 649	  

statistical significance at 99% level. 650	  

 651	  
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FIG. 11 As in Fig. 7c,d, but for TC landfall ratio over the United States. 652	  

 653	  

FIG. 12 Schematic diagram showing synthesized hybrid model to predict landfall TC 654	  

frequency. Details are explained in the main text. 655	  

 656	  

FIG. 13 Results of the interannual variation in the frequency of landfall TCs by (a–c) the 657	  

dynamical model and (d–f) the synthesized hybrid model for each lead month of (a, d) 0, (b, e) 658	  

2, and (c, f) 4. Blue areas indicate range of 10% bottom range and 90% top range computed 659	  

from random resampling. Numbers shown for each panel show rank correlation and RMSE 660	  

between the black and blue lines. The star mark indicates statistical significance at 99% level. 661	  

 662	  

FIG. 14 As in Fig. 7c,d, but for frequency of landfall TCs over the United States.663	  
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 676	  

 677	  

 678	  

FIG. 1 TC tracks during the period 1980–2014 as separated by the cluster analysis. The fuzzy 679	  

c-mean clustering is first applied to the observed TC tracks (green), yielding mean track (red) 680	  

for each cluster. All predicted TC tracks by FLOR (black) are assigned to observed TC cluster 681	  

regardless of any lead-months and ensemble members based on root-mean-square error 682	  

between the predicted and mean TC track. The number in the bottom-right corner indicates the 683	  

sample size with the fractional ratio in parenthesis. Blue domain in each panel shows the 684	  

region of the United States considered for the landfall. 685	  
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FIG. 2 Forecast skill in predicting TC frequency for each cluster and for each lead month 705	  

predicted by the dynamical model. (a) Rank correlation between observed and predicted. (b) 706	  

Root-mean-square error. Black line shows the basin-total TC frequency as defined as total TC 707	  

frequency among the TC clusters. 708	  
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 716	  

 717	  

 718	  

 719	  

 720	  

 721	  

 722	  

FIG. 3 Correlation map between the time-series of observed TC frequency for each cluster 723	  

and simulated mean large-scale parameters during July–November for each 1° × 1° grid box. 724	  

(a–d) Relative SST (RSST) defined as the local SST anomaly subtracted from the tropical 725	  

mean (30°S–30°N) SST anomaly. (e–h) Geopotential height at the 500 hPa level (Z500); (i–l) 726	  

Zonal component of vertical wind shear (200–850 hPa, WS). Rectangles indicate domains for 727	  

predictors as red rectangles showing positive sign and blue rectangles showing negative sign. 728	  
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 732	  

 733	  

 734	  
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 741	  

 742	  

 743	  

 744	  

 745	  

FIG. 4 Correlation map between RSST and CL3 TC frequency during July–November. (a) 746	  

Correlation between observed RSST and predicted TC frequency by the model for CL3 at lead-747	  

month 0. (b) As in (a), but for correlation between observed RSST and observed TC frequency 748	  

for CL3. Red (blue) rectangles indicate domains for predictors showing a positive (negative) 749	  

sign. 750	  
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FIG. 5 Anomaly correlation for simulated large-scale parameters for each lead-month of L=0, 766	  

3, and 6. (a–c) RSST, (d–f) Z500, and (g–i) WS. The rectangles in these panels are the same as 767	  

in Fig. 3. 768	  
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FIG. 6 Results of interannual variation of TC frequency by (a–d) the regression and (e–h) the 784	  

leave-one-out cross validation (LOOCV) for each cluster at lead-month 0. Observed 785	  

(Regressed or cross validated) TC frequency is shown in black (blue). Blue regions indicates 786	  

range of 10% bottom range and 90% top range computed from random resampling based on 787	  

the Poisson distribution. Numbers shown for each panel show rank correlation and RMSE 788	  

between the black and blue lines. The star mark indicates statistical significance at 99% level.  789	  
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FIG. 7 (a, b) Comparisons of forecast kills between dynamical model (solid line) and hybrid 809	  

model (dashed line) in predicting TC frequency for each cluster and for each lead month. (a) 810	  

shows the rank correlation between observations and models, whereas (b) shows RMSE 811	  

between them. (c, d) As in (a, b), but for basin-total TC frequency. 812	  
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 825	  

 826	  

 827	  

FIG. 8 Observed time-series of TC frequency and landfall ratio in the North Atlantic. The red 828	  

line indicates observed basin-total TC frequency, whereas the blue line indicates observed 829	  

landfall TCs over the United States. The black line shows the landfall ratio. The green line 830	  

shows Niño-3.4 index which is obtained from the mean SST anomaly in the region bounded 831	  

by 5°N and 5°S, and between 170°W to 120°W.  832	  
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FIG. 9 Correlation map between observed TC landfall ratio over the United States and 851	  

simulated SST anomalies for each lead month. (a) Lead month 0, (b) Lead month 3, and (c) 852	  

Lead month 6. 853	  
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FIG. 10 Results of interannual variation of TC landfall ratio by (a–c) the regression and (d–f) 870	  

the leave-one-out cross validation (LOOCV) for each lead month of (a, d) 0, (b, e) 3, and (c, f) 871	  

6. Blue areas indicate the range between the 10% and 90% computed from random resampling 872	  

based on the binomial distribution. Numbers shown in the middle top for each panel indicate 873	  

rank correlation and RMSE between the black and blue lines. The star mark indicates 874	  

statistical significance at 99% level. 875	  
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                     FIG. 11 As in Fig. 7c,d, but for TC landfall ratio over the United States. 896	  
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FIG. 12 Schematic diagram showing synthesized hybrid model to predict landfall TC 914	  

frequency. Details are explained in the main text. 915	  
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FIG. 13 Results of the interannual variation in the frequency of landfall TCs by (a–c) the 930	  

dynamical model and (d–f) the synthesized hybrid model for each lead month of (a, d) 0, (b, e) 931	  

2, and (c, f) 4. Blue areas indicate range of 10% bottom range and 90% top range computed 932	  

from random resampling. Numbers shown for each panel show rank correlation and RMSE 933	  

between the black and blue lines. The star mark indicates statistical significance at 99% level. 934	  
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              FIG. 14 As in Fig. 7c,d, but for frequency of landfall TCs over the United States. 956	  

 


